$$$\frac{d}{x} - 6 x - 7$$$$$$x$$$ 的積分

此計算器會求出 $$$\frac{d}{x} - 6 x - 7$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(\frac{d}{x} - 6 x - 7\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(\frac{d}{x} - 6 x - 7\right)d x}}} = {\color{red}{\left(- \int{7 d x} - \int{6 x d x} + \int{\frac{d}{x} d x}\right)}}$$

配合 $$$c=7$$$,應用常數法則 $$$\int c\, dx = c x$$$

$$- \int{6 x d x} + \int{\frac{d}{x} d x} - {\color{red}{\int{7 d x}}} = - \int{6 x d x} + \int{\frac{d}{x} d x} - {\color{red}{\left(7 x\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=6$$$$$$f{\left(x \right)} = x$$$

$$- 7 x + \int{\frac{d}{x} d x} - {\color{red}{\int{6 x d x}}} = - 7 x + \int{\frac{d}{x} d x} - {\color{red}{\left(6 \int{x d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$- 7 x + \int{\frac{d}{x} d x} - 6 {\color{red}{\int{x d x}}}=- 7 x + \int{\frac{d}{x} d x} - 6 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 7 x + \int{\frac{d}{x} d x} - 6 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=d$$$$$$f{\left(x \right)} = \frac{1}{x}$$$

$$- 3 x^{2} - 7 x + {\color{red}{\int{\frac{d}{x} d x}}} = - 3 x^{2} - 7 x + {\color{red}{d \int{\frac{1}{x} d x}}}$$

$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$

$$d {\color{red}{\int{\frac{1}{x} d x}}} - 3 x^{2} - 7 x = d {\color{red}{\ln{\left(\left|{x}\right| \right)}}} - 3 x^{2} - 7 x$$

因此,

$$\int{\left(\frac{d}{x} - 6 x - 7\right)d x} = d \ln{\left(\left|{x}\right| \right)} - 3 x^{2} - 7 x$$

加上積分常數:

$$\int{\left(\frac{d}{x} - 6 x - 7\right)d x} = d \ln{\left(\left|{x}\right| \right)} - 3 x^{2} - 7 x+C$$

答案

$$$\int \left(\frac{d}{x} - 6 x - 7\right)\, dx = \left(d \ln\left(\left|{x}\right|\right) - 3 x^{2} - 7 x\right) + C$$$A


Please try a new game Rotatly