$$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}\, dx$$$。
解答
進行部分分式分解(步驟可見 »):
$${\color{red}{\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x}}} = {\color{red}{\int{\left(- \frac{1}{x - 2} + \frac{5}{3 \left(x - 3\right)} - \frac{2}{3 x}\right)d x}}}$$
逐項積分:
$${\color{red}{\int{\left(- \frac{1}{x - 2} + \frac{5}{3 \left(x - 3\right)} - \frac{2}{3 x}\right)d x}}} = {\color{red}{\left(- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \int{\frac{1}{x - 2} d x}\right)}}$$
令 $$$u=x - 2$$$。
則 $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
因此,
$$- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{x - 2} d x}}} = - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=x - 2$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} = - \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)} - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{2}{3}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$- \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{2}{3 x} d x}}} = - \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\left(\frac{2 \int{\frac{1}{x} d x}}{3}\right)}}$$
$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \frac{2 {\color{red}{\int{\frac{1}{x} d x}}}}{3} = - \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \frac{2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{3}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{5}{3}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x - 3}$$$:
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\int{\frac{5}{3 \left(x - 3\right)} d x}}} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\left(\frac{5 \int{\frac{1}{x - 3} d x}}{3}\right)}}$$
令 $$$u=x - 3$$$。
則 $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
所以,
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{x - 3} d x}}}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{3}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$
回顧一下 $$$u=x - 3$$$:
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)}}{3}$$
因此,
$$\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} + \frac{5 \ln{\left(\left|{x - 3}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)}$$
加上積分常數:
$$\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} + \frac{5 \ln{\left(\left|{x - 3}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)}+C$$
答案
$$$\int \frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}\, dx = \left(- \frac{2 \ln\left(\left|{x}\right|\right)}{3} + \frac{5 \ln\left(\left|{x - 3}\right|\right)}{3} - \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A