$$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}$$$ 的積分

此計算器將求出 $$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}\, dx$$$

解答

進行部分分式分解(步驟可見 »):

$${\color{red}{\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x}}} = {\color{red}{\int{\left(- \frac{1}{x - 2} + \frac{5}{3 \left(x - 3\right)} - \frac{2}{3 x}\right)d x}}}$$

逐項積分:

$${\color{red}{\int{\left(- \frac{1}{x - 2} + \frac{5}{3 \left(x - 3\right)} - \frac{2}{3 x}\right)d x}}} = {\color{red}{\left(- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \int{\frac{1}{x - 2} d x}\right)}}$$

$$$u=x - 2$$$

$$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

因此,

$$- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{x - 2} d x}}} = - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回顧一下 $$$u=x - 2$$$

$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} = - \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)} - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{2}{3}$$$$$$f{\left(x \right)} = \frac{1}{x}$$$

$$- \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{2}{3 x} d x}}} = - \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\left(\frac{2 \int{\frac{1}{x} d x}}{3}\right)}}$$

$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$

$$- \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \frac{2 {\color{red}{\int{\frac{1}{x} d x}}}}{3} = - \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \frac{2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{3}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{5}{3}$$$$$$f{\left(x \right)} = \frac{1}{x - 3}$$$

$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\int{\frac{5}{3 \left(x - 3\right)} d x}}} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\left(\frac{5 \int{\frac{1}{x - 3} d x}}{3}\right)}}$$

$$$u=x - 3$$$

$$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$

所以,

$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{x - 3} d x}}}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{3}$$

$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$

$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$

回顧一下 $$$u=x - 3$$$

$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)}}{3}$$

因此,

$$\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} + \frac{5 \ln{\left(\left|{x - 3}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)}$$

加上積分常數:

$$\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} + \frac{5 \ln{\left(\left|{x - 3}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)}+C$$

答案

$$$\int \frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}\, dx = \left(- \frac{2 \ln\left(\left|{x}\right|\right)}{3} + \frac{5 \ln\left(\left|{x - 3}\right|\right)}{3} - \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A


Please try a new game Rotatly