Integral of $$$\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}\, dx$$$.
Solution
Perform partial fraction decomposition (steps can be seen »):
$${\color{red}{\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x}}} = {\color{red}{\int{\left(- \frac{1}{x - 2} + \frac{5}{3 \left(x - 3\right)} - \frac{2}{3 x}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(- \frac{1}{x - 2} + \frac{5}{3 \left(x - 3\right)} - \frac{2}{3 x}\right)d x}}} = {\color{red}{\left(- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \int{\frac{1}{x - 2} d x}\right)}}$$
Let $$$u=x - 2$$$.
Then $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Thus,
$$- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{x - 2} d x}}} = - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x - 2$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x} = - \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)} - \int{\frac{2}{3 x} d x} + \int{\frac{5}{3 \left(x - 3\right)} d x}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{2}{3}$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$- \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{2}{3 x} d x}}} = - \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - {\color{red}{\left(\frac{2 \int{\frac{1}{x} d x}}{3}\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \frac{2 {\color{red}{\int{\frac{1}{x} d x}}}}{3} = - \ln{\left(\left|{x - 2}\right| \right)} + \int{\frac{5}{3 \left(x - 3\right)} d x} - \frac{2 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{3}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{5}{3}$$$ and $$$f{\left(x \right)} = \frac{1}{x - 3}$$$:
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\int{\frac{5}{3 \left(x - 3\right)} d x}}} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + {\color{red}{\left(\frac{5 \int{\frac{1}{x - 3} d x}}{3}\right)}}$$
Let $$$u=x - 3$$$.
Then $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral becomes
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{x - 3} d x}}}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{3}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\int{\frac{1}{u} d u}}}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}$$
Recall that $$$u=x - 3$$$:
$$- \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)} + \frac{5 \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)}}{3}$$
Therefore,
$$\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} + \frac{5 \ln{\left(\left|{x - 3}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)} d x} = - \frac{2 \ln{\left(\left|{x}\right| \right)}}{3} + \frac{5 \ln{\left(\left|{x - 3}\right| \right)}}{3} - \ln{\left(\left|{x - 2}\right| \right)}+C$$
Answer
$$$\int \frac{3 x - 4}{x \left(x - 3\right) \left(x - 2\right)}\, dx = \left(- \frac{2 \ln\left(\left|{x}\right|\right)}{3} + \frac{5 \ln\left(\left|{x - 3}\right|\right)}{3} - \ln\left(\left|{x - 2}\right|\right)\right) + C$$$A