$$$\frac{\ln\left(\frac{t}{t + 1}\right)}{t \left(t + 1\right)}$$$ 的積分

此計算器將求出 $$$\frac{\ln\left(\frac{t}{t + 1}\right)}{t \left(t + 1\right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\ln\left(\frac{t}{t + 1}\right)}{t \left(t + 1\right)}\, dt$$$

解答

$$$u=\ln{\left(\frac{t}{t + 1} \right)}$$$

$$$du=\left(\ln{\left(\frac{t}{t + 1} \right)}\right)^{\prime }dt = \frac{1}{t \left(t + 1\right)} dt$$$ (步驟見»),並可得 $$$\frac{dt}{t \left(t + 1\right)} = du$$$

因此,

$${\color{red}{\int{\frac{\ln{\left(\frac{t}{t + 1} \right)}}{t \left(t + 1\right)} d t}}} = {\color{red}{\int{u d u}}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$${\color{red}{\int{u d u}}}={\color{red}{\frac{u^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

回顧一下 $$$u=\ln{\left(\frac{t}{t + 1} \right)}$$$

$$\frac{{\color{red}{u}}^{2}}{2} = \frac{{\color{red}{\ln{\left(\frac{t}{t + 1} \right)}}}^{2}}{2}$$

因此,

$$\int{\frac{\ln{\left(\frac{t}{t + 1} \right)}}{t \left(t + 1\right)} d t} = \frac{\ln{\left(\frac{t}{t + 1} \right)}^{2}}{2}$$

加上積分常數:

$$\int{\frac{\ln{\left(\frac{t}{t + 1} \right)}}{t \left(t + 1\right)} d t} = \frac{\ln{\left(\frac{t}{t + 1} \right)}^{2}}{2}+C$$

答案

$$$\int \frac{\ln\left(\frac{t}{t + 1}\right)}{t \left(t + 1\right)}\, dt = \frac{\ln^{2}\left(\frac{t}{t + 1}\right)}{2} + C$$$A


Please try a new game Rotatly