Intégrale de $$$\frac{\ln\left(\frac{t}{t + 1}\right)}{t \left(t + 1\right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\ln\left(\frac{t}{t + 1}\right)}{t \left(t + 1\right)}\, dt$$$.
Solution
Soit $$$u=\ln{\left(\frac{t}{t + 1} \right)}$$$.
Alors $$$du=\left(\ln{\left(\frac{t}{t + 1} \right)}\right)^{\prime }dt = \frac{1}{t \left(t + 1\right)} dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$\frac{dt}{t \left(t + 1\right)} = du$$$.
Par conséquent,
$${\color{red}{\int{\frac{\ln{\left(\frac{t}{t + 1} \right)}}{t \left(t + 1\right)} d t}}} = {\color{red}{\int{u d u}}}$$
Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :
$${\color{red}{\int{u d u}}}={\color{red}{\frac{u^{1 + 1}}{1 + 1}}}={\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
Rappelons que $$$u=\ln{\left(\frac{t}{t + 1} \right)}$$$ :
$$\frac{{\color{red}{u}}^{2}}{2} = \frac{{\color{red}{\ln{\left(\frac{t}{t + 1} \right)}}}^{2}}{2}$$
Par conséquent,
$$\int{\frac{\ln{\left(\frac{t}{t + 1} \right)}}{t \left(t + 1\right)} d t} = \frac{\ln{\left(\frac{t}{t + 1} \right)}^{2}}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{\ln{\left(\frac{t}{t + 1} \right)}}{t \left(t + 1\right)} d t} = \frac{\ln{\left(\frac{t}{t + 1} \right)}^{2}}{2}+C$$
Réponse
$$$\int \frac{\ln\left(\frac{t}{t + 1}\right)}{t \left(t + 1\right)}\, dt = \frac{\ln^{2}\left(\frac{t}{t + 1}\right)}{2} + C$$$A