定積分與廣義積分計算器
逐步計算定積分與瑕積分
此計算器將嘗試計算定積分(即帶有上下限的積分),包含廣義積分,並顯示步驟。
Solution
Your input: calculate $$$\int_{a}^{b}\left( x^{- n} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{x^{- n} d x}=- \frac{x^{1 - n}}{n - 1}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- \frac{x^{1 - n}}{n - 1}\right)|_{\left(x=b\right)}=- \frac{b^{1 - n}}{n - 1}$$$
$$$\left(- \frac{x^{1 - n}}{n - 1}\right)|_{\left(x=a\right)}=- \frac{a^{1 - n}}{n - 1}$$$
$$$\int_{a}^{b}\left( x^{- n} \right)dx=\left(- \frac{x^{1 - n}}{n - 1}\right)|_{\left(x=b\right)}-\left(- \frac{x^{1 - n}}{n - 1}\right)|_{\left(x=a\right)}=\frac{a^{1 - n}}{n - 1} - \frac{b^{1 - n}}{n - 1}$$$
Answer: $$$\int_{a}^{b}\left( x^{- n} \right)dx=\frac{a^{1 - n}}{n - 1} - \frac{b^{1 - n}}{n - 1}$$$