定積分與廣義積分計算器
逐步計算定積分與瑕積分
此計算器將嘗試計算定積分(即帶有上下限的積分),包含廣義積分,並顯示步驟。
Solution
Your input: calculate $$$\int_{0}^{1}\left( t^{2} x - t^{2} y \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(t^{2} x - t^{2} y\right)d x}=\frac{t^{2} x \left(x - 2 y\right)}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{t^{2} x \left(x - 2 y\right)}{2}\right)|_{\left(x=1\right)}=\frac{t^{2} \left(1 - 2 y\right)}{2}$$$
$$$\left(\frac{t^{2} x \left(x - 2 y\right)}{2}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{1}\left( t^{2} x - t^{2} y \right)dx=\left(\frac{t^{2} x \left(x - 2 y\right)}{2}\right)|_{\left(x=1\right)}-\left(\frac{t^{2} x \left(x - 2 y\right)}{2}\right)|_{\left(x=0\right)}=\frac{t^{2} \left(1 - 2 y\right)}{2}$$$
Answer: $$$\int_{0}^{1}\left( t^{2} x - t^{2} y \right)dx=\frac{t^{2} \left(1 - 2 y\right)}{2}$$$