定積分與廣義積分計算器

逐步計算定積分與瑕積分

此計算器將嘗試計算定積分(即帶有上下限的積分),包含廣義積分,並顯示步驟。

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}\left( e^{x} \cos{\left(x \right)} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{e^{x} \cos{\left(x \right)} d x}=\frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}\right)|_{\left(x=\frac{\pi}{2}\right)}=\frac{e^{\frac{\pi}{2}}}{2}$$$

$$$\left(\frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}\right)|_{\left(x=- \frac{\pi}{2}\right)}=- \frac{1}{2 e^{\frac{\pi}{2}}}$$$

$$$\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}\left( e^{x} \cos{\left(x \right)} \right)dx=\left(\frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}\right)|_{\left(x=\frac{\pi}{2}\right)}-\left(\frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}\right)|_{\left(x=- \frac{\pi}{2}\right)}=\frac{1}{2 e^{\frac{\pi}{2}}} + \frac{e^{\frac{\pi}{2}}}{2}$$$

Answer: $$$\int_{- \frac{\pi}{2}}^{\frac{\pi}{2}}\left( e^{x} \cos{\left(x \right)} \right)dx=\frac{1}{2 e^{\frac{\pi}{2}}} + \frac{e^{\frac{\pi}{2}}}{2}\approx 2.50917847865806$$$


Please try a new game Rotatly