$$$x^{3} + 5 x^{2} + 7 x + 4$$$ 的導數

此計算器將求出 $$$x^{3} + 5 x^{2} + 7 x + 4$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right)$$$

解答

和/差的導數等於導數的和/差:

$${\color{red}\left(\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(5 x^{2}\right) + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(4\right)\right)}$$

常數的導數為$$$0$$$

$${\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(5 x^{2}\right) + \frac{d}{dx} \left(x^{3}\right) = {\color{red}\left(0\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(5 x^{2}\right) + \frac{d}{dx} \left(x^{3}\right)$$

套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = 5$$$$$$f{\left(x \right)} = x^{2}$$$

$${\color{red}\left(\frac{d}{dx} \left(5 x^{2}\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right) = {\color{red}\left(5 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right)$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 2$$$

$$5 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right) = 5 {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right)$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 3$$$

$$10 x + {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} + \frac{d}{dx} \left(7 x\right) = 10 x + {\color{red}\left(3 x^{2}\right)} + \frac{d}{dx} \left(7 x\right)$$

套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = 7$$$$$$f{\left(x \right)} = x$$$

$$3 x^{2} + 10 x + {\color{red}\left(\frac{d}{dx} \left(7 x\right)\right)} = 3 x^{2} + 10 x + {\color{red}\left(7 \frac{d}{dx} \left(x\right)\right)}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$

$$3 x^{2} + 10 x + 7 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 3 x^{2} + 10 x + 7 {\color{red}\left(1\right)}$$

化簡:

$$3 x^{2} + 10 x + 7 = \left(x + 1\right) \left(3 x + 7\right)$$

因此,$$$\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right) = \left(x + 1\right) \left(3 x + 7\right)$$$

答案

$$$\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right) = \left(x + 1\right) \left(3 x + 7\right)$$$A


Please try a new game Rotatly