$$$t \left(t - 1\right)$$$ 的導數

此計算器將求出 $$$t \left(t - 1\right)$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dt} \left(t \left(t - 1\right)\right)$$$

解答

將乘積法則 $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ 應用於 $$$f{\left(t \right)} = t$$$$$$g{\left(t \right)} = t - 1$$$

$${\color{red}\left(\frac{d}{dt} \left(t \left(t - 1\right)\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(t\right) \left(t - 1\right) + t \frac{d}{dt} \left(t - 1\right)\right)}$$

套用冪次法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dt} \left(t\right) = 1$$$

$$t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(1\right)}$$

和/差的導數等於導數的和/差:

$$t {\color{red}\left(\frac{d}{dt} \left(t - 1\right)\right)} + t - 1 = t {\color{red}\left(\frac{d}{dt} \left(t\right) - \frac{d}{dt} \left(1\right)\right)} + t - 1$$

常數的導數為$$$0$$$

$$t \left(- {\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1 = t \left(- {\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1$$

套用冪次法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dt} \left(t\right) = 1$$$

$$t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t - 1 = t {\color{red}\left(1\right)} + t - 1$$

因此,$$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$

答案

$$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$A


Please try a new game Rotatly