$$$\sqrt{a^{x} - 1}$$$ 對 $$$x$$$ 的導數
您的輸入
求$$$\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right)$$$。
解答
函數 $$$\sqrt{a^{x} - 1}$$$ 是兩個函數 $$$f{\left(u \right)} = \sqrt{u}$$$ 與 $$$g{\left(x \right)} = a^{x} - 1$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$。
應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(a^{x} - 1\right)\right)}$$套用冪次法則 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(a^{x} - 1\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(a^{x} - 1\right)$$返回原變數:
$$\frac{\frac{d}{dx} \left(a^{x} - 1\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(a^{x} - 1\right)}{2 \sqrt{{\color{red}\left(a^{x} - 1\right)}}}$$和/差的導數等於導數的和/差:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(a^{x} - 1\right)\right)}}{2 \sqrt{a^{x} - 1}} = \frac{{\color{red}\left(\frac{d}{dx} \left(a^{x}\right) - \frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{a^{x} - 1}}$$套用指數法則 $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$,令 $$$n = a$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(a^{x}\right)\right)} - \frac{d}{dx} \left(1\right)}{2 \sqrt{a^{x} - 1}} = \frac{{\color{red}\left(a^{x} \ln\left(a\right)\right)} - \frac{d}{dx} \left(1\right)}{2 \sqrt{a^{x} - 1}}$$常數的導數為$$$0$$$:
$$\frac{a^{x} \ln\left(a\right) - {\color{red}\left(\frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{a^{x} - 1}} = \frac{a^{x} \ln\left(a\right) - {\color{red}\left(0\right)}}{2 \sqrt{a^{x} - 1}}$$因此,$$$\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right) = \frac{a^{x} \ln\left(a\right)}{2 \sqrt{a^{x} - 1}}$$$。
答案
$$$\frac{d}{dx} \left(\sqrt{a^{x} - 1}\right) = \frac{a^{x} \ln\left(a\right)}{2 \sqrt{a^{x} - 1}}$$$A