$$$\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}$$$ 的導數

此計算器將求出 $$$\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right)$$$

解答

套用常數倍法則 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$,使用 $$$c = \frac{\sqrt{6}}{3}$$$$$$f{\left(t \right)} = \cos{\left(t + \frac{\pi}{4} \right)}$$$

$${\color{red}\left(\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right)\right)} = {\color{red}\left(\frac{\sqrt{6}}{3} \frac{d}{dt} \left(\cos{\left(t + \frac{\pi}{4} \right)}\right)\right)}$$

函數 $$$\cos{\left(t + \frac{\pi}{4} \right)}$$$ 是兩個函數 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$$$$g{\left(t \right)} = t + \frac{\pi}{4}$$$ 之複合 $$$f{\left(g{\left(t \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$

$$\frac{\sqrt{6} {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t + \frac{\pi}{4} \right)}\right)\right)}}{3} = \frac{\sqrt{6} {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dt} \left(t + \frac{\pi}{4}\right)\right)}}{3}$$

餘弦函數的導數為 $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$

$$\frac{\sqrt{6} {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3} = \frac{\sqrt{6} {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3}$$

返回原變數:

$$- \frac{\sqrt{6} \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3} = - \frac{\sqrt{6} \sin{\left({\color{red}\left(t + \frac{\pi}{4}\right)} \right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3}$$

和/差的導數等於導數的和/差:

$$- \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dt} \left(t + \frac{\pi}{4}\right)\right)}}{3} = - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(\frac{\pi}{4}\right)\right)}}{3}$$

套用冪次法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dt} \left(t\right) = 1$$$

$$- \frac{\sqrt{6} \left({\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{\pi}{4}\right)\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3} = - \frac{\sqrt{6} \left({\color{red}\left(1\right)} + \frac{d}{dt} \left(\frac{\pi}{4}\right)\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$

常數的導數為$$$0$$$

$$- \frac{\sqrt{6} \left({\color{red}\left(\frac{d}{dt} \left(\frac{\pi}{4}\right)\right)} + 1\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3} = - \frac{\sqrt{6} \left({\color{red}\left(0\right)} + 1\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$

因此,$$$\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right) = - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$$

答案

$$$\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right) = - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$$A


Please try a new game Rotatly