$$$\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}$$$ 對 $$$x$$$ 的導數
相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)
您的輸入
求$$$\frac{d}{dx} \left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right)$$$。
解答
套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = \frac{\sqrt{2}}{2 \left|{\sigma}\right|}$$$ 與 $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right)\right)} = {\color{red}\left(\frac{\sqrt{2}}{2 \left|{\sigma}\right|} \frac{d}{dx} \left(x\right)\right)}$$套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\sqrt{2} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2 \left|{\sigma}\right|} = \frac{\sqrt{2} {\color{red}\left(1\right)}}{2 \left|{\sigma}\right|}$$因此,$$$\frac{d}{dx} \left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right) = \frac{\sqrt{2}}{2 \left|{\sigma}\right|}$$$。
答案
$$$\frac{d}{dx} \left(\frac{\sqrt{2} x}{2 \left|{\sigma}\right|}\right) = \frac{\sqrt{2}}{2 \left|{\sigma}\right|}$$$A