$$$\sqrt{1 - x^{2}}$$$ 的導數

此計算器將求出 $$$\sqrt{1 - x^{2}}$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right)$$$

解答

函數 $$$\sqrt{1 - x^{2}}$$$ 是兩個函數 $$$f{\left(u \right)} = \sqrt{u}$$$$$$g{\left(x \right)} = 1 - x^{2}$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(1 - x^{2}\right)\right)}$$

套用冪次法則 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = \frac{1}{2}$$$

$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(1 - x^{2}\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(1 - x^{2}\right)$$

返回原變數:

$$\frac{\frac{d}{dx} \left(1 - x^{2}\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(1 - x^{2}\right)}{2 \sqrt{{\color{red}\left(1 - x^{2}\right)}}}$$

和/差的導數等於導數的和/差:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(1 - x^{2}\right)\right)}}{2 \sqrt{1 - x^{2}}} = \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x^{2}\right)\right)}}{2 \sqrt{1 - x^{2}}}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 2$$$

$$\frac{- {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(1\right)}{2 \sqrt{1 - x^{2}}} = \frac{- {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(1\right)}{2 \sqrt{1 - x^{2}}}$$

常數的導數為$$$0$$$

$$\frac{- 2 x + {\color{red}\left(\frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{1 - x^{2}}} = \frac{- 2 x + {\color{red}\left(0\right)}}{2 \sqrt{1 - x^{2}}}$$

因此,$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right) = - \frac{x}{\sqrt{1 - x^{2}}}$$$

答案

$$$\frac{d}{dx} \left(\sqrt{1 - x^{2}}\right) = - \frac{x}{\sqrt{1 - x^{2}}}$$$A


Please try a new game Rotatly