$$$\sqrt{1 - x}$$$ 的導數
您的輸入
求$$$\frac{d}{dx} \left(\sqrt{1 - x}\right)$$$。
解答
函數 $$$\sqrt{1 - x}$$$ 是兩個函數 $$$f{\left(u \right)} = \sqrt{u}$$$ 與 $$$g{\left(x \right)} = 1 - x$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$。
應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{1 - x}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(1 - x\right)\right)}$$套用冪次法則 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(1 - x\right) = {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(1 - x\right)$$返回原變數:
$$\frac{\frac{d}{dx} \left(1 - x\right)}{2 \sqrt{{\color{red}\left(u\right)}}} = \frac{\frac{d}{dx} \left(1 - x\right)}{2 \sqrt{{\color{red}\left(1 - x\right)}}}$$和/差的導數等於導數的和/差:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(1 - x\right)\right)}}{2 \sqrt{1 - x}} = \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x\right)\right)}}{2 \sqrt{1 - x}}$$常數的導數為$$$0$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} - \frac{d}{dx} \left(x\right)}{2 \sqrt{1 - x}} = \frac{{\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)}{2 \sqrt{1 - x}}$$套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2 \sqrt{1 - x}} = - \frac{{\color{red}\left(1\right)}}{2 \sqrt{1 - x}}$$因此,$$$\frac{d}{dx} \left(\sqrt{1 - x}\right) = - \frac{1}{2 \sqrt{1 - x}}$$$。
答案
$$$\frac{d}{dx} \left(\sqrt{1 - x}\right) = - \frac{1}{2 \sqrt{1 - x}}$$$A
Please try a new game Rotatly