$$$\frac{\ln\left(x\right)}{\ln\left(2\right)}$$$ 的導數
您的輸入
求$$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right)$$$。
解答
套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = \frac{1}{\ln\left(2\right)}$$$ 與 $$$f{\left(x \right)} = \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(2\right)}\right)}$$自然對數的導數為 $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)}}{\ln\left(2\right)} = \frac{{\color{red}\left(\frac{1}{x}\right)}}{\ln\left(2\right)}$$因此,$$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right) = \frac{1}{x \ln\left(2\right)}$$$。
答案
$$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right) = \frac{1}{x \ln\left(2\right)}$$$A
Please try a new game Rotatly