$$$\ln^{2}\left(x\right)$$$ 的導數

此計算器將求出 $$$\ln^{2}\left(x\right)$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right)$$$

解答

函數 $$$\ln^{2}\left(x\right)$$$ 是兩個函數 $$$f{\left(u \right)} = u^{2}$$$$$$g{\left(x \right)} = \ln\left(x\right)$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\ln^{2}\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

套用冪次法則 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = 2$$$

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

返回原變數:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = 2 {\color{red}\left(\ln\left(x\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

自然對數的導數為 $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$

$$2 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 2 \ln\left(x\right) {\color{red}\left(\frac{1}{x}\right)}$$

因此,$$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right) = \frac{2 \ln\left(x\right)}{x}$$$

答案

$$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right) = \frac{2 \ln\left(x\right)}{x}$$$A


Please try a new game Rotatly