$$$e^{x} + \sin{\left(y z \right)}$$$$$$y$$$ 的導數

此計算器將求出$$$e^{x} + \sin{\left(y z \right)}$$$$$$y$$$的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right)$$$

解答

和/差的導數等於導數的和/差:

$${\color{red}\left(\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dy} \left(e^{x}\right) + \frac{d}{dy} \left(\sin{\left(y z \right)}\right)\right)}$$

函數 $$$\sin{\left(y z \right)}$$$ 是兩個函數 $$$f{\left(u \right)} = \sin{\left(u \right)}$$$$$$g{\left(y \right)} = y z$$$ 之複合 $$$f{\left(g{\left(y \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dy} \left(f{\left(g{\left(y \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dy} \left(g{\left(y \right)}\right)$$$

$${\color{red}\left(\frac{d}{dy} \left(\sin{\left(y z \right)}\right)\right)} + \frac{d}{dy} \left(e^{x}\right) = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dy} \left(y z\right)\right)} + \frac{d}{dy} \left(e^{x}\right)$$

正弦函數的導數為$$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right)$$

返回原變數:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right) = \cos{\left({\color{red}\left(y z\right)} \right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right)$$

套用常數倍法則 $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$,使用 $$$c = z$$$$$$f{\left(y \right)} = y$$$

$$\cos{\left(y z \right)} {\color{red}\left(\frac{d}{dy} \left(y z\right)\right)} + \frac{d}{dy} \left(e^{x}\right) = \cos{\left(y z \right)} {\color{red}\left(z \frac{d}{dy} \left(y\right)\right)} + \frac{d}{dy} \left(e^{x}\right)$$

常數的導數為$$$0$$$

$$z \cos{\left(y z \right)} \frac{d}{dy} \left(y\right) + {\color{red}\left(\frac{d}{dy} \left(e^{x}\right)\right)} = z \cos{\left(y z \right)} \frac{d}{dy} \left(y\right) + {\color{red}\left(0\right)}$$

套用冪次法則 $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dy} \left(y\right) = 1$$$

$$z \cos{\left(y z \right)} {\color{red}\left(\frac{d}{dy} \left(y\right)\right)} = z \cos{\left(y z \right)} {\color{red}\left(1\right)}$$

因此,$$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right) = z \cos{\left(y z \right)}$$$

答案

$$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right) = z \cos{\left(y z \right)}$$$A


Please try a new game Rotatly