$$$e x$$$ 的導數
您的輸入
求$$$\frac{d}{dx} \left(e x\right)$$$。
解答
套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = e$$$ 與 $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(e x\right)\right)} = {\color{red}\left(e \frac{d}{dx} \left(x\right)\right)}$$套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$e {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = e {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(e x\right) = e$$$。
答案
$$$\frac{d}{dx} \left(e x\right) = e$$$A
Please try a new game Rotatly