$$$\cos{\left(t \right)} + 1$$$ 的導數
您的輸入
求$$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right)$$$。
解答
和/差的導數等於導數的和/差:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right) + \frac{d}{dt} \left(1\right)\right)}$$常數的導數為$$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(\cos{\left(t \right)}\right) = {\color{red}\left(0\right)} + \frac{d}{dt} \left(\cos{\left(t \right)}\right)$$餘弦函數的導數為 $$$\frac{d}{dt} \left(\cos{\left(t \right)}\right) = - \sin{\left(t \right)}$$$:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right)\right)} = {\color{red}\left(- \sin{\left(t \right)}\right)}$$因此,$$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right) = - \sin{\left(t \right)}$$$。
答案
$$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right) = - \sin{\left(t \right)}$$$A
Please try a new game Rotatly