$$$\cos{\left(b - x \right)}$$$$$$x$$$ 的導數

此計算器將求出$$$\cos{\left(b - x \right)}$$$$$$x$$$的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right)$$$

解答

函數 $$$\cos{\left(b - x \right)}$$$ 是兩個函數 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$$$$g{\left(x \right)} = b - x$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\cos{\left(b - x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(b - x\right)\right)}$$

餘弦函數的導數為 $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$

$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(b - x\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(b - x\right)$$

返回原變數:

$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(b - x\right) = - \sin{\left({\color{red}\left(b - x\right)} \right)} \frac{d}{dx} \left(b - x\right)$$

和/差的導數等於導數的和/差:

$$- \sin{\left(b - x \right)} {\color{red}\left(\frac{d}{dx} \left(b - x\right)\right)} = - \sin{\left(b - x \right)} {\color{red}\left(\frac{db}{dx} - \frac{d}{dx} \left(x\right)\right)}$$

常數的導數為$$$0$$$

$$- \left({\color{red}\left(\frac{db}{dx}\right)} - \frac{d}{dx} \left(x\right)\right) \sin{\left(b - x \right)} = - \left({\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)\right) \sin{\left(b - x \right)}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$

$$\sin{\left(b - x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \sin{\left(b - x \right)} {\color{red}\left(1\right)}$$

因此,$$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right) = \sin{\left(b - x \right)}$$$

答案

$$$\frac{d}{dx} \left(\cos{\left(b - x \right)}\right) = \sin{\left(b - x \right)}$$$A


Please try a new game Rotatly