$$$3 - x$$$ 的導數
您的輸入
求$$$\frac{d}{dx} \left(3 - x\right)$$$。
解答
和/差的導數等於導數的和/差:
$${\color{red}\left(\frac{d}{dx} \left(3 - x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(3\right) - \frac{d}{dx} \left(x\right)\right)}$$常數的導數為$$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(3\right)\right)} - \frac{d}{dx} \left(x\right) = {\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)$$套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(3 - x\right) = -1$$$。
答案
$$$\frac{d}{dx} \left(3 - x\right) = -1$$$A
Please try a new game Rotatly