$$$3 x z$$$ 對 $$$z$$$ 的導數
您的輸入
求$$$\frac{d}{dz} \left(3 x z\right)$$$。
解答
套用常數倍法則 $$$\frac{d}{dz} \left(c f{\left(z \right)}\right) = c \frac{d}{dz} \left(f{\left(z \right)}\right)$$$,使用 $$$c = 3 x$$$ 與 $$$f{\left(z \right)} = z$$$:
$${\color{red}\left(\frac{d}{dz} \left(3 x z\right)\right)} = {\color{red}\left(3 x \frac{d}{dz} \left(z\right)\right)}$$套用冪次法則 $$$\frac{d}{dz} \left(z^{n}\right) = n z^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dz} \left(z\right) = 1$$$:
$$3 x {\color{red}\left(\frac{d}{dz} \left(z\right)\right)} = 3 x {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dz} \left(3 x z\right) = 3 x$$$。
答案
$$$\frac{d}{dz} \left(3 x z\right) = 3 x$$$A
Please try a new game Rotatly