$$$2 \operatorname{atan}{\left(v \right)}$$$ 的導數
您的輸入
求$$$\frac{d}{dv} \left(2 \operatorname{atan}{\left(v \right)}\right)$$$。
解答
套用常數倍法則 $$$\frac{d}{dv} \left(c f{\left(v \right)}\right) = c \frac{d}{dv} \left(f{\left(v \right)}\right)$$$,使用 $$$c = 2$$$ 與 $$$f{\left(v \right)} = \operatorname{atan}{\left(v \right)}$$$:
$${\color{red}\left(\frac{d}{dv} \left(2 \operatorname{atan}{\left(v \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dv} \left(\operatorname{atan}{\left(v \right)}\right)\right)}$$反正切函數的導數是 $$$\frac{d}{dv} \left(\operatorname{atan}{\left(v \right)}\right) = \frac{1}{v^{2} + 1}$$$:
$$2 {\color{red}\left(\frac{d}{dv} \left(\operatorname{atan}{\left(v \right)}\right)\right)} = 2 {\color{red}\left(\frac{1}{v^{2} + 1}\right)}$$因此,$$$\frac{d}{dv} \left(2 \operatorname{atan}{\left(v \right)}\right) = \frac{2}{v^{2} + 1}$$$。
答案
$$$\frac{d}{dv} \left(2 \operatorname{atan}{\left(v \right)}\right) = \frac{2}{v^{2} + 1}$$$A
Please try a new game Rotatly