$$$1 - \frac{\sin{\left(t \right)}}{2}$$$ 的導數
您的輸入
求$$$\frac{d}{dt} \left(1 - \frac{\sin{\left(t \right)}}{2}\right)$$$。
解答
和/差的導數等於導數的和/差:
$${\color{red}\left(\frac{d}{dt} \left(1 - \frac{\sin{\left(t \right)}}{2}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(1\right) - \frac{d}{dt} \left(\frac{\sin{\left(t \right)}}{2}\right)\right)}$$套用常數倍法則 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$,使用 $$$c = \frac{1}{2}$$$ 與 $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{\sin{\left(t \right)}}{2}\right)\right)} + \frac{d}{dt} \left(1\right) = - {\color{red}\left(\frac{\frac{d}{dt} \left(\sin{\left(t \right)}\right)}{2}\right)} + \frac{d}{dt} \left(1\right)$$正弦函數的導數為$$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$- \frac{{\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}}{2} + \frac{d}{dt} \left(1\right) = - \frac{{\color{red}\left(\cos{\left(t \right)}\right)}}{2} + \frac{d}{dt} \left(1\right)$$常數的導數為$$$0$$$:
$$- \frac{\cos{\left(t \right)}}{2} + {\color{red}\left(\frac{d}{dt} \left(1\right)\right)} = - \frac{\cos{\left(t \right)}}{2} + {\color{red}\left(0\right)}$$因此,$$$\frac{d}{dt} \left(1 - \frac{\sin{\left(t \right)}}{2}\right) = - \frac{\cos{\left(t \right)}}{2}$$$。
答案
$$$\frac{d}{dt} \left(1 - \frac{\sin{\left(t \right)}}{2}\right) = - \frac{\cos{\left(t \right)}}{2}$$$A
Please try a new game Rotatly