$$$\frac{1}{\sqrt{x^{2} - 3 x + 9}}$$$ 的導數

此計算器將求出 $$$\frac{1}{\sqrt{x^{2} - 3 x + 9}}$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right)$$$

解答

函數 $$$\frac{1}{\sqrt{x^{2} - 3 x + 9}}$$$ 是兩個函數 $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$$$$g{\left(x \right)} = x^{2} - 3 x + 9$$$ 之複合 $$$f{\left(g{\left(x \right)} \right)}$$$

應用鏈式法則 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right) \frac{d}{dx} \left(x^{2} - 3 x + 9\right)\right)}$$

套用冪次法則 $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$,取 $$$n = - \frac{1}{2}$$$

$${\color{red}\left(\frac{d}{du} \left(\frac{1}{\sqrt{u}}\right)\right)} \frac{d}{dx} \left(x^{2} - 3 x + 9\right) = {\color{red}\left(- \frac{1}{2 u^{\frac{3}{2}}}\right)} \frac{d}{dx} \left(x^{2} - 3 x + 9\right)$$

返回原變數:

$$- \frac{\frac{d}{dx} \left(x^{2} - 3 x + 9\right)}{2 {\color{red}\left(u\right)}^{\frac{3}{2}}} = - \frac{\frac{d}{dx} \left(x^{2} - 3 x + 9\right)}{2 {\color{red}\left(x^{2} - 3 x + 9\right)}^{\frac{3}{2}}}$$

和/差的導數等於導數的和/差:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2} - 3 x + 9\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right) - \frac{d}{dx} \left(3 x\right) + \frac{d}{dx} \left(9\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

常數的導數為$$$0$$$

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(9\right)\right)} - \frac{d}{dx} \left(3 x\right) + \frac{d}{dx} \left(x^{2}\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(0\right)} - \frac{d}{dx} \left(3 x\right) + \frac{d}{dx} \left(x^{2}\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 2$$$

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} - \frac{d}{dx} \left(3 x\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{{\color{red}\left(2 x\right)} - \frac{d}{dx} \left(3 x\right)}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = 3$$$$$$f{\left(x \right)} = x$$$

$$- \frac{2 x - {\color{red}\left(\frac{d}{dx} \left(3 x\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{2 x - {\color{red}\left(3 \frac{d}{dx} \left(x\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$

$$- \frac{2 x - 3 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = - \frac{2 x - 3 {\color{red}\left(1\right)}}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

化簡:

$$- \frac{2 x - 3}{2 \left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}} = \frac{\frac{3}{2} - x}{\left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$

因此,$$$\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right) = \frac{\frac{3}{2} - x}{\left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$$

答案

$$$\frac{d}{dx} \left(\frac{1}{\sqrt{x^{2} - 3 x + 9}}\right) = \frac{\frac{3}{2} - x}{\left(x^{2} - 3 x + 9\right)^{\frac{3}{2}}}$$$A


Please try a new game Rotatly