$$$- x + e^{x}$$$ 的導數
您的輸入
求$$$\frac{d}{dx} \left(- x + e^{x}\right)$$$。
解答
和/差的導數等於導數的和/差:
$${\color{red}\left(\frac{d}{dx} \left(- x + e^{x}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(e^{x}\right)\right)}$$指數函數的導數為 $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} - \frac{d}{dx} \left(x\right) = {\color{red}\left(e^{x}\right)} - \frac{d}{dx} \left(x\right)$$套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$e^{x} - {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = e^{x} - {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(- x + e^{x}\right) = e^{x} - 1$$$。
答案
$$$\frac{d}{dx} \left(- x + e^{x}\right) = e^{x} - 1$$$A
Please try a new game Rotatly