$$$- t^{2}$$$ 的導數
您的輸入
求$$$\frac{d}{dt} \left(- t^{2}\right)$$$。
解答
套用常數倍法則 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$,使用 $$$c = -1$$$ 與 $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}\left(\frac{d}{dt} \left(- t^{2}\right)\right)} = {\color{red}\left(- \frac{d}{dt} \left(t^{2}\right)\right)}$$套用冪次法則 $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$,取 $$$n = 2$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(t^{2}\right)\right)} = - {\color{red}\left(2 t\right)}$$因此,$$$\frac{d}{dt} \left(- t^{2}\right) = - 2 t$$$。
答案
$$$\frac{d}{dt} \left(- t^{2}\right) = - 2 t$$$A
Please try a new game Rotatly