$$$- \frac{\sqrt{5} \sin{\left(t \right)}}{5}$$$ 的導數
您的輸入
求$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)$$$。
解答
套用常數倍法則 $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$,使用 $$$c = - \frac{\sqrt{5}}{5}$$$ 與 $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:
$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)\right)} = {\color{red}\left(- \frac{\sqrt{5}}{5} \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$正弦函數的導數為$$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$- \frac{\sqrt{5} {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}}{5} = - \frac{\sqrt{5} {\color{red}\left(\cos{\left(t \right)}\right)}}{5}$$因此,$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$。
答案
$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$A
Please try a new game Rotatly