$$$- c + z$$$ 對 $$$c$$$ 的導數
您的輸入
求$$$\frac{d}{dc} \left(- c + z\right)$$$。
解答
和/差的導數等於導數的和/差:
$${\color{red}\left(\frac{d}{dc} \left(- c + z\right)\right)} = {\color{red}\left(- \frac{d}{dc} \left(c\right) + \frac{dz}{dc}\right)}$$套用冪次法則 $$$\frac{d}{dc} \left(c^{n}\right) = n c^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dc} \left(c\right) = 1$$$:
$$- {\color{red}\left(\frac{d}{dc} \left(c\right)\right)} + \frac{dz}{dc} = - {\color{red}\left(1\right)} + \frac{dz}{dc}$$常數的導數為$$$0$$$:
$${\color{red}\left(\frac{dz}{dc}\right)} - 1 = {\color{red}\left(0\right)} - 1$$因此,$$$\frac{d}{dc} \left(- c + z\right) = -1$$$。
答案
$$$\frac{d}{dc} \left(- c + z\right) = -1$$$A
Please try a new game Rotatly