$$$- \frac{2 x}{x^{2} + 1}$$$ 的導數

此計算器將求出 $$$- \frac{2 x}{x^{2} + 1}$$$ 的導數,並顯示步驟。

相關計算器: 對數微分計算器, 隱式微分計算器(附步驟)

留空以自動偵測。
若不需要在特定點處的導數,請留空。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right)$$$

解答

套用常數倍法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$,使用 $$$c = -2$$$$$$f{\left(x \right)} = \frac{x}{x^{2} + 1}$$$

$${\color{red}\left(\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dx} \left(\frac{x}{x^{2} + 1}\right)\right)}$$

$$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = x^{2} + 1$$$ 套用商法則 $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$

$$- 2 {\color{red}\left(\frac{d}{dx} \left(\frac{x}{x^{2} + 1}\right)\right)} = - 2 {\color{red}\left(\frac{\frac{d}{dx} \left(x\right) \left(x^{2} + 1\right) - x \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}\right)}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{dx} \left(x\right) = 1$$$

$$- \frac{2 \left(- x \frac{d}{dx} \left(x^{2} + 1\right) + \left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(- x \frac{d}{dx} \left(x^{2} + 1\right) + \left(x^{2} + 1\right) {\color{red}\left(1\right)}\right)}{\left(x^{2} + 1\right)^{2}}$$

和/差的導數等於導數的和/差:

$$- \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

常數的導數為$$$0$$$

$$- \frac{2 \left(x^{2} - x \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right) + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right) + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

套用冪次法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 2$$$

$$- \frac{2 \left(x^{2} - x {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}} = - \frac{2 \left(x^{2} - x {\color{red}\left(2 x\right)} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$

化簡:

$$- \frac{2 \left(1 - x^{2}\right)}{\left(x^{2} + 1\right)^{2}} = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$

因此,$$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right) = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$$

答案

$$$\frac{d}{dx} \left(- \frac{2 x}{x^{2} + 1}\right) = \frac{2 \left(x^{2} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$$A


Please try a new game Rotatly