奇异值分解计算器

计算器将找到给定矩阵的奇异值分解 (SVD),并显示步骤。

$$$\times$$$

如果计算器没有计算出某些东西,或者您发现了错误,或者您有建议/反馈,请将其写在下面的评论中。

您的输入

$$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]$$$的 SVD。

解决方案

求矩阵的转置: $$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T} = \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]$$$ (步骤见矩阵转置计算器)。

将矩阵与其转置相乘: $$$W = \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right] = \left[\begin{array}{ccc}2 & 2 & 2\\2 & 6 & 2\\2 & 2 & 2\end{array}\right]$$$ (有关步骤,请参阅 矩阵乘法计算器)。

$$$W$$$的特征值和特征向量(有关步骤,请参阅 特征值和特征向量计算器)。

特征值: $$$8$$$ ,特征向量: $$$\left[\begin{array}{c}1\\2\\1\end{array}\right]$$$

特征值: $$$2$$$ ,特征向量: $$$\left[\begin{array}{c}1\\-1\\1\end{array}\right]$$$

特征值: $$$0$$$ ,特征向量: $$$\left[\begin{array}{c}-1\\0\\1\end{array}\right]$$$

求非零特征值 ( $$$\sigma_{i}$$$ ) 的平方根:

$$$\sigma_{1} = 2 \sqrt{2}$$$

$$$\sigma_{2} = \sqrt{2}$$$

$$$\Sigma$$$矩阵是一个零矩阵,其对角线上$$$\sigma_{i}$$$ $$$\Sigma = \left[\begin{array}{ccc}2 \sqrt{2} & 0 & 0\\0 & \sqrt{2} & 0\\0 & 0 & 0\end{array}\right]$$$

$$$U$$$的列是归一化(单位)向量: $$$U = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{6}}{3} & - \frac{\sqrt{3}}{3} & 0\\\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\end{array}\right]$$$ (有关寻找单位向量的步骤,请参阅 单位向量计算器)。

现在, $$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{i}$$$

$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{1} = \frac{1}{2 \sqrt{2}}\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{6}}{6}\\\frac{\sqrt{6}}{3}\\\frac{\sqrt{6}}{6}\end{array}\right] = \left[\begin{array}{c}\frac{\sqrt{6}}{6}\\\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{6}\end{array}\right]$$$ (有关步骤,请参阅 矩阵标量乘法计算器矩阵乘法计算器)。

$$$v_{2} = \frac{1}{\sigma_{2}}\cdot \left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right]^{T}\cdot u_{2} = \frac{1}{\sqrt{2}}\cdot \left[\begin{array}{ccc}0 & \sqrt{2} & 0\\1 & 2 & 1\\1 & 0 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{3}}{3}\\- \frac{\sqrt{3}}{3}\\\frac{\sqrt{3}}{3}\end{array}\right] = \left[\begin{array}{c}- \frac{\sqrt{3}}{3}\\0\\\frac{\sqrt{6}}{3}\end{array}\right]$$$ (有关步骤,请参阅 矩阵标量乘法计算器矩阵乘法计算器)。

由于我们已经用完了非零$$$\sigma_{i}$$$并且还需要一个向量,通过找到矩阵的零空间来找到所有找到的向量的正交向量: $$$\left[\begin{array}{c}\sqrt{2}\\-1\\1\end{array}\right]$$$ (步骤见零空间计算器)。

Normalize the vector: it becomes $$$\left[\begin{array}{c}\frac{\sqrt{2}}{2}\\- \frac{1}{2}\\\frac{1}{2}\end{array}\right]$$$, (for steps, see unit vector calculator).

因此, $$$V = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & - \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{3}}{2} & 0 & - \frac{1}{2}\\\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3} & \frac{1}{2}\end{array}\right]$$$

矩阵$$$U$$$$$$\Sigma$$$$$$V$$$使得初始矩阵$$$\left[\begin{array}{ccc}0 & 1 & 1\\\sqrt{2} & 2 & 0\\0 & 1 & 1\end{array}\right] = U \Sigma V^T$$$

回答

$$$U = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{6}}{3} & - \frac{\sqrt{3}}{3} & 0\\\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\end{array}\right]\approx \left[\begin{array}{ccc}0.408248290463863 & 0.577350269189626 & -0.707106781186548\\0.816496580927726 & -0.577350269189626 & 0\\0.408248290463863 & 0.577350269189626 & 0.707106781186548\end{array}\right]$$$A

$$$\Sigma = \left[\begin{array}{ccc}2 \sqrt{2} & 0 & 0\\0 & \sqrt{2} & 0\\0 & 0 & 0\end{array}\right]\approx \left[\begin{array}{ccc}2.82842712474619 & 0 & 0\\0 & 1.414213562373095 & 0\\0 & 0 & 0\end{array}\right]$$$A

$$$V = \left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & - \frac{\sqrt{3}}{3} & \frac{\sqrt{2}}{2}\\\frac{\sqrt{3}}{2} & 0 & - \frac{1}{2}\\\frac{\sqrt{3}}{6} & \frac{\sqrt{6}}{3} & \frac{1}{2}\end{array}\right]\approx \left[\begin{array}{ccc}0.408248290463863 & -0.577350269189626 & 0.707106781186548\\0.866025403784439 & 0 & -0.5\\0.288675134594813 & 0.816496580927726 & 0.5\end{array}\right]$$$A