$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]}$$$
相关计算器: 矩阵幂计算器
您的输入
求$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]}$$$。
解答
首先,对矩阵进行对角化(步骤参见矩阵对角化计算器)。
由于该矩阵不可对角化,将其写为对角矩阵 $$$D = \left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]$$$ 与幂零矩阵 $$$N = \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]$$$ 之和。
注意到$$$N^{2} = \left[\begin{array}{cc}0 & 0\\0 & 0\end{array}\right]$$$。
这意味着$$$e^{N} = I + N$$$,即$$$e^{\left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = \left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right] + \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right] = \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right]$$$。
对角矩阵的矩阵指数是一个对角元素逐一取指数得到的矩阵:$$$e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]} = \left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]$$$。
现在,$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]} = e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right] + \left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = e^{\left[\begin{array}{cc}t & 0\\0 & t\end{array}\right]}\cdot e^{\left[\begin{array}{cc}0 & - t\\0 & 0\end{array}\right]} = \left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]\cdot \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right]$$$。
最后,将矩阵相乘:
$$$\left[\begin{array}{cc}e^{t} & 0\\0 & e^{t}\end{array}\right]\cdot \left[\begin{array}{cc}1 & - t\\0 & 1\end{array}\right] = \left[\begin{array}{cc}e^{t} & - t e^{t}\\0 & e^{t}\end{array}\right]$$$(步骤请参见矩阵乘法计算器)。
答案
$$$e^{\left[\begin{array}{cc}t & - t\\0 & t\end{array}\right]} = \left[\begin{array}{cc}e^{t} & - t e^{t}\\0 & e^{t}\end{array}\right]$$$A