$$$e - x^{2}$$$ 的积分

该计算器将求出$$$e - x^{2}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(e - x^{2}\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(e - x^{2}\right)d x}}} = {\color{red}{\left(\int{e d x} - \int{x^{2} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=e$$$

$$- \int{x^{2} d x} + {\color{red}{\int{e d x}}} = - \int{x^{2} d x} + {\color{red}{e x}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$e x - {\color{red}{\int{x^{2} d x}}}=e x - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=e x - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

因此,

$$\int{\left(e - x^{2}\right)d x} = - \frac{x^{3}}{3} + e x$$

化简:

$$\int{\left(e - x^{2}\right)d x} = x \left(e - \frac{x^{2}}{3}\right)$$

加上积分常数:

$$\int{\left(e - x^{2}\right)d x} = x \left(e - \frac{x^{2}}{3}\right)+C$$

答案

$$$\int \left(e - x^{2}\right)\, dx = x \left(e - \frac{x^{2}}{3}\right) + C$$$A


Please try a new game Rotatly