Integral of $$$e - x^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(e - x^{2}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(e - x^{2}\right)d x}}} = {\color{red}{\left(\int{e d x} - \int{x^{2} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=e$$$:
$$- \int{x^{2} d x} + {\color{red}{\int{e d x}}} = - \int{x^{2} d x} + {\color{red}{e x}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$e x - {\color{red}{\int{x^{2} d x}}}=e x - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=e x - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Therefore,
$$\int{\left(e - x^{2}\right)d x} = - \frac{x^{3}}{3} + e x$$
Simplify:
$$\int{\left(e - x^{2}\right)d x} = x \left(e - \frac{x^{2}}{3}\right)$$
Add the constant of integration:
$$\int{\left(e - x^{2}\right)d x} = x \left(e - \frac{x^{2}}{3}\right)+C$$
Answer
$$$\int \left(e - x^{2}\right)\, dx = x \left(e - \frac{x^{2}}{3}\right) + C$$$A