$$$2 x - 32$$$ 的积分
您的输入
求$$$\int \left(2 x - 32\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(2 x - 32\right)d x}}} = {\color{red}{\left(- \int{32 d x} + \int{2 x d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=32$$$:
$$\int{2 x d x} - {\color{red}{\int{32 d x}}} = \int{2 x d x} - {\color{red}{\left(32 x\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- 32 x + {\color{red}{\int{2 x d x}}} = - 32 x + {\color{red}{\left(2 \int{x d x}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$- 32 x + 2 {\color{red}{\int{x d x}}}=- 32 x + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 32 x + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
因此,
$$\int{\left(2 x - 32\right)d x} = x^{2} - 32 x$$
化简:
$$\int{\left(2 x - 32\right)d x} = x \left(x - 32\right)$$
加上积分常数:
$$\int{\left(2 x - 32\right)d x} = x \left(x - 32\right)+C$$
答案
$$$\int \left(2 x - 32\right)\, dx = x \left(x - 32\right) + C$$$A