$$$\sqrt{2} x^{\frac{5}{2}} - 4 x^{3} - 1$$$ 的积分

该计算器将求出$$$\sqrt{2} x^{\frac{5}{2}} - 4 x^{3} - 1$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(\sqrt{2} x^{\frac{5}{2}} - 4 x^{3} - 1\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(\sqrt{2} x^{\frac{5}{2}} - 4 x^{3} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{4 x^{3} d x} + \int{\sqrt{2} x^{\frac{5}{2}} d x}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$

$$- \int{4 x^{3} d x} + \int{\sqrt{2} x^{\frac{5}{2}} d x} - {\color{red}{\int{1 d x}}} = - \int{4 x^{3} d x} + \int{\sqrt{2} x^{\frac{5}{2}} d x} - {\color{red}{x}}$$

$$$c=4$$$$$$f{\left(x \right)} = x^{3}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- x + \int{\sqrt{2} x^{\frac{5}{2}} d x} - {\color{red}{\int{4 x^{3} d x}}} = - x + \int{\sqrt{2} x^{\frac{5}{2}} d x} - {\color{red}{\left(4 \int{x^{3} d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$

$$- x + \int{\sqrt{2} x^{\frac{5}{2}} d x} - 4 {\color{red}{\int{x^{3} d x}}}=- x + \int{\sqrt{2} x^{\frac{5}{2}} d x} - 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- x + \int{\sqrt{2} x^{\frac{5}{2}} d x} - 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

$$$c=\sqrt{2}$$$$$$f{\left(x \right)} = x^{\frac{5}{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- x^{4} - x + {\color{red}{\int{\sqrt{2} x^{\frac{5}{2}} d x}}} = - x^{4} - x + {\color{red}{\sqrt{2} \int{x^{\frac{5}{2}} d x}}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=\frac{5}{2}$$$

$$- x^{4} - x + \sqrt{2} {\color{red}{\int{x^{\frac{5}{2}} d x}}}=- x^{4} - x + \sqrt{2} {\color{red}{\frac{x^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}=- x^{4} - x + \sqrt{2} {\color{red}{\left(\frac{2 x^{\frac{7}{2}}}{7}\right)}}$$

因此,

$$\int{\left(\sqrt{2} x^{\frac{5}{2}} - 4 x^{3} - 1\right)d x} = \frac{2 \sqrt{2} x^{\frac{7}{2}}}{7} - x^{4} - x$$

加上积分常数:

$$\int{\left(\sqrt{2} x^{\frac{5}{2}} - 4 x^{3} - 1\right)d x} = \frac{2 \sqrt{2} x^{\frac{7}{2}}}{7} - x^{4} - x+C$$

答案

$$$\int \left(\sqrt{2} x^{\frac{5}{2}} - 4 x^{3} - 1\right)\, dx = \left(\frac{2 \sqrt{2} x^{\frac{7}{2}}}{7} - x^{4} - x\right) + C$$$A


Please try a new game Rotatly