$$$\frac{10 x^{2}}{e^{10}}$$$ 的积分
您的输入
求$$$\int \frac{10 x^{2}}{e^{10}}\, dx$$$。
解答
对 $$$c=\frac{10}{e^{10}}$$$ 和 $$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{10 x^{2}}{e^{10}} d x}}} = {\color{red}{\left(\frac{10 \int{x^{2} d x}}{e^{10}}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$\frac{10 {\color{red}{\int{x^{2} d x}}}}{e^{10}}=\frac{10 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{e^{10}}=\frac{10 {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{e^{10}}$$
因此,
$$\int{\frac{10 x^{2}}{e^{10}} d x} = \frac{10 x^{3}}{3 e^{10}}$$
加上积分常数:
$$\int{\frac{10 x^{2}}{e^{10}} d x} = \frac{10 x^{3}}{3 e^{10}}+C$$
答案
$$$\int \frac{10 x^{2}}{e^{10}}\, dx = \frac{10 x^{3}}{3 e^{10}} + C$$$A