$$$x^{3} - 2$$$ 的积分
您的输入
求$$$\int \left(x^{3} - 2\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(x^{3} - 2\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{x^{3} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=2$$$:
$$\int{x^{3} d x} - {\color{red}{\int{2 d x}}} = \int{x^{3} d x} - {\color{red}{\left(2 x\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$:
$$- 2 x + {\color{red}{\int{x^{3} d x}}}=- 2 x + {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- 2 x + {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
因此,
$$\int{\left(x^{3} - 2\right)d x} = \frac{x^{4}}{4} - 2 x$$
化简:
$$\int{\left(x^{3} - 2\right)d x} = \frac{x \left(x^{3} - 8\right)}{4}$$
加上积分常数:
$$\int{\left(x^{3} - 2\right)d x} = \frac{x \left(x^{3} - 8\right)}{4}+C$$
答案
$$$\int \left(x^{3} - 2\right)\, dx = \frac{x \left(x^{3} - 8\right)}{4} + C$$$A