Integral of $$$x^{3} - 2$$$

The calculator will find the integral/antiderivative of $$$x^{3} - 2$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(x^{3} - 2\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(x^{3} - 2\right)d x}}} = {\color{red}{\left(- \int{2 d x} + \int{x^{3} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=2$$$:

$$\int{x^{3} d x} - {\color{red}{\int{2 d x}}} = \int{x^{3} d x} - {\color{red}{\left(2 x\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:

$$- 2 x + {\color{red}{\int{x^{3} d x}}}=- 2 x + {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- 2 x + {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$

Therefore,

$$\int{\left(x^{3} - 2\right)d x} = \frac{x^{4}}{4} - 2 x$$

Simplify:

$$\int{\left(x^{3} - 2\right)d x} = \frac{x \left(x^{3} - 8\right)}{4}$$

Add the constant of integration:

$$\int{\left(x^{3} - 2\right)d x} = \frac{x \left(x^{3} - 8\right)}{4}+C$$

Answer

$$$\int \left(x^{3} - 2\right)\, dx = \frac{x \left(x^{3} - 8\right)}{4} + C$$$A


Please try a new game Rotatly