$$$\sin{\left(14 x \right)} \cos{\left(9 x \right)}$$$ 的积分

该计算器将求出$$$\sin{\left(14 x \right)} \cos{\left(9 x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sin{\left(14 x \right)} \cos{\left(9 x \right)}\, dx$$$

解答

使用公式 $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ 并结合 $$$\alpha=14 x$$$$$$\beta=9 x$$$ 重写被积函数:

$${\color{red}{\int{\sin{\left(14 x \right)} \cos{\left(9 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(5 x \right)}}{2} + \frac{\sin{\left(23 x \right)}}{2}\right)d x}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \sin{\left(5 x \right)} + \sin{\left(23 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\left(\frac{\sin{\left(5 x \right)}}{2} + \frac{\sin{\left(23 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(5 x \right)} + \sin{\left(23 x \right)}\right)d x}}{2}\right)}}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(\sin{\left(5 x \right)} + \sin{\left(23 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(5 x \right)} d x} + \int{\sin{\left(23 x \right)} d x}\right)}}}{2}$$

$$$u=5 x$$$

$$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (步骤见»),并有$$$dx = \frac{du}{5}$$$

积分变为

$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2}$$

$$$c=\frac{1}{5}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{2}$$

正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{10} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{10}$$

回忆一下 $$$u=5 x$$$:

$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{10} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{10}$$

$$$u=23 x$$$

$$$du=\left(23 x\right)^{\prime }dx = 23 dx$$$ (步骤见»),并有$$$dx = \frac{du}{23}$$$

所以,

$$- \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\sin{\left(23 x \right)} d x}}}}{2} = - \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{23} d u}}}}{2}$$

$$$c=\frac{1}{23}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{23} d u}}}}{2} = - \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{23}\right)}}}{2}$$

正弦函数的积分为 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$- \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{46} = - \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{46}$$

回忆一下 $$$u=23 x$$$:

$$- \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left({\color{red}{u}} \right)}}{46} = - \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left({\color{red}{\left(23 x\right)}} \right)}}{46}$$

因此,

$$\int{\sin{\left(14 x \right)} \cos{\left(9 x \right)} d x} = - \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left(23 x \right)}}{46}$$

加上积分常数:

$$\int{\sin{\left(14 x \right)} \cos{\left(9 x \right)} d x} = - \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left(23 x \right)}}{46}+C$$

答案

$$$\int \sin{\left(14 x \right)} \cos{\left(9 x \right)}\, dx = \left(- \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left(23 x \right)}}{46}\right) + C$$$A


Please try a new game Rotatly