Integralen av $$$\sin{\left(14 x \right)} \cos{\left(9 x \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \sin{\left(14 x \right)} \cos{\left(9 x \right)}\, dx$$$.
Lösning
Skriv om integranden med hjälp av formeln $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ tillsammans med $$$\alpha=14 x$$$ och $$$\beta=9 x$$$:
$${\color{red}{\int{\sin{\left(14 x \right)} \cos{\left(9 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(5 x \right)}}{2} + \frac{\sin{\left(23 x \right)}}{2}\right)d x}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=\frac{1}{2}$$$ och $$$f{\left(x \right)} = \sin{\left(5 x \right)} + \sin{\left(23 x \right)}$$$:
$${\color{red}{\int{\left(\frac{\sin{\left(5 x \right)}}{2} + \frac{\sin{\left(23 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(5 x \right)} + \sin{\left(23 x \right)}\right)d x}}{2}\right)}}$$
Integrera termvis:
$$\frac{{\color{red}{\int{\left(\sin{\left(5 x \right)} + \sin{\left(23 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(5 x \right)} d x} + \int{\sin{\left(23 x \right)} d x}\right)}}}{2}$$
Låt $$$u=5 x$$$ vara.
Då $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{5}$$$.
Alltså,
$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(5 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{5}$$$ och $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{5} d u}}}}{2} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{5}\right)}}}{2}$$
Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{10} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{10}$$
Kom ihåg att $$$u=5 x$$$:
$$\frac{\int{\sin{\left(23 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{10} = \frac{\int{\sin{\left(23 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(5 x\right)}} \right)}}{10}$$
Låt $$$u=23 x$$$ vara.
Då $$$du=\left(23 x\right)^{\prime }dx = 23 dx$$$ (stegen kan ses »), och vi har att $$$dx = \frac{du}{23}$$$.
Integralen kan omskrivas som
$$- \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\sin{\left(23 x \right)} d x}}}}{2} = - \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{23} d u}}}}{2}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{23}$$$ och $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$- \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{23} d u}}}}{2} = - \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{23}\right)}}}{2}$$
Integralen av sinus är $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$- \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{46} = - \frac{\cos{\left(5 x \right)}}{10} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{46}$$
Kom ihåg att $$$u=23 x$$$:
$$- \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left({\color{red}{u}} \right)}}{46} = - \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left({\color{red}{\left(23 x\right)}} \right)}}{46}$$
Alltså,
$$\int{\sin{\left(14 x \right)} \cos{\left(9 x \right)} d x} = - \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left(23 x \right)}}{46}$$
Lägg till integrationskonstanten:
$$\int{\sin{\left(14 x \right)} \cos{\left(9 x \right)} d x} = - \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left(23 x \right)}}{46}+C$$
Svar
$$$\int \sin{\left(14 x \right)} \cos{\left(9 x \right)}\, dx = \left(- \frac{\cos{\left(5 x \right)}}{10} - \frac{\cos{\left(23 x \right)}}{46}\right) + C$$$A