$$$\sin{\left(x \right)} - \cos{\left(x \right)}$$$ 的积分
您的输入
求$$$\int \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{\sin{\left(x \right)} d x} - \int{\cos{\left(x \right)} d x}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\cos{\left(x \right)} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\sin{\left(x \right)}}}$$
正弦函数的积分为 $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \sin{\left(x \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \sin{\left(x \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
因此,
$$\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x} = - \sin{\left(x \right)} - \cos{\left(x \right)}$$
化简:
$$\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x} = - \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)}$$
加上积分常数:
$$\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x} = - \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)}+C$$
答案
$$$\int \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx = - \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)} + C$$$A