$$$\sin{\left(x \right)} - \cos{\left(x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{\sin{\left(x \right)} d x} - \int{\cos{\left(x \right)} d x}\right)}}$$
Kosinüsün integrali $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\int{\sin{\left(x \right)} d x} - {\color{red}{\int{\cos{\left(x \right)} d x}}} = \int{\sin{\left(x \right)} d x} - {\color{red}{\sin{\left(x \right)}}}$$
Sinüsün integrali $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$- \sin{\left(x \right)} + {\color{red}{\int{\sin{\left(x \right)} d x}}} = - \sin{\left(x \right)} + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Dolayısıyla,
$$\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x} = - \sin{\left(x \right)} - \cos{\left(x \right)}$$
Sadeleştirin:
$$\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x} = - \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)d x} = - \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)}+C$$
Cevap
$$$\int \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)\, dx = - \sqrt{2} \sin{\left(x + \frac{\pi}{4} \right)} + C$$$A