$$$\frac{2 \ln\left(x\right)}{x}$$$ 的积分
您的输入
求$$$\int \frac{2 \ln\left(x\right)}{x}\, dx$$$。
解答
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = \frac{\ln{\left(x \right)}}{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{2 \ln{\left(x \right)}}{x} d x}}} = {\color{red}{\left(2 \int{\frac{\ln{\left(x \right)}}{x} d x}\right)}}$$
设$$$u=\ln{\left(x \right)}$$$。
则$$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步骤见»),并有$$$\frac{dx}{x} = du$$$。
积分变为
$$2 {\color{red}{\int{\frac{\ln{\left(x \right)}}{x} d x}}} = 2 {\color{red}{\int{u d u}}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$2 {\color{red}{\int{u d u}}}=2 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=2 {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
回忆一下 $$$u=\ln{\left(x \right)}$$$:
$${\color{red}{u}}^{2} = {\color{red}{\ln{\left(x \right)}}}^{2}$$
因此,
$$\int{\frac{2 \ln{\left(x \right)}}{x} d x} = \ln{\left(x \right)}^{2}$$
加上积分常数:
$$\int{\frac{2 \ln{\left(x \right)}}{x} d x} = \ln{\left(x \right)}^{2}+C$$
答案
$$$\int \frac{2 \ln\left(x\right)}{x}\, dx = \ln^{2}\left(x\right) + C$$$A