$$$2 - \frac{x}{2}$$$ 的积分
您的输入
求$$$\int \left(2 - \frac{x}{2}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(2 - \frac{x}{2}\right)d x}}} = {\color{red}{\left(\int{2 d x} - \int{\frac{x}{2} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=2$$$:
$$- \int{\frac{x}{2} d x} + {\color{red}{\int{2 d x}}} = - \int{\frac{x}{2} d x} + {\color{red}{\left(2 x\right)}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$2 x - {\color{red}{\int{\frac{x}{2} d x}}} = 2 x - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$:
$$2 x - \frac{{\color{red}{\int{x d x}}}}{2}=2 x - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=2 x - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$
因此,
$$\int{\left(2 - \frac{x}{2}\right)d x} = - \frac{x^{2}}{4} + 2 x$$
化简:
$$\int{\left(2 - \frac{x}{2}\right)d x} = \frac{x \left(8 - x\right)}{4}$$
加上积分常数:
$$\int{\left(2 - \frac{x}{2}\right)d x} = \frac{x \left(8 - x\right)}{4}+C$$
答案
$$$\int \left(2 - \frac{x}{2}\right)\, dx = \frac{x \left(8 - x\right)}{4} + C$$$A