Integral of $$$2 - \frac{x}{2}$$$

The calculator will find the integral/antiderivative of $$$2 - \frac{x}{2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(2 - \frac{x}{2}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(2 - \frac{x}{2}\right)d x}}} = {\color{red}{\left(\int{2 d x} - \int{\frac{x}{2} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=2$$$:

$$- \int{\frac{x}{2} d x} + {\color{red}{\int{2 d x}}} = - \int{\frac{x}{2} d x} + {\color{red}{\left(2 x\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = x$$$:

$$2 x - {\color{red}{\int{\frac{x}{2} d x}}} = 2 x - {\color{red}{\left(\frac{\int{x d x}}{2}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$2 x - \frac{{\color{red}{\int{x d x}}}}{2}=2 x - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{2}=2 x - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{2}$$

Therefore,

$$\int{\left(2 - \frac{x}{2}\right)d x} = - \frac{x^{2}}{4} + 2 x$$

Simplify:

$$\int{\left(2 - \frac{x}{2}\right)d x} = \frac{x \left(8 - x\right)}{4}$$

Add the constant of integration:

$$\int{\left(2 - \frac{x}{2}\right)d x} = \frac{x \left(8 - x\right)}{4}+C$$

Answer

$$$\int \left(2 - \frac{x}{2}\right)\, dx = \frac{x \left(8 - x\right)}{4} + C$$$A


Please try a new game Rotatly