$$$2^{x} e^{x}$$$ 的积分

该计算器将求出$$$2^{x} e^{x}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int 2^{x} e^{x}\, dx$$$

解答

输入已重写为:$$$\int{2^{x} e^{x} d x}=\int{\left(2 e\right)^{x} d x}$$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2 e$$$:

$${\color{red}{\int{\left(2 e\right)^{x} d x}}} = {\color{red}{\frac{\left(2 e\right)^{x}}{\ln{\left(2 e \right)}}}}$$

因此,

$$\int{\left(2 e\right)^{x} d x} = \frac{\left(2 e\right)^{x}}{\ln{\left(2 e \right)}}$$

化简:

$$\int{\left(2 e\right)^{x} d x} = \frac{2^{x} e^{x}}{\ln{\left(2 \right)} + 1}$$

加上积分常数:

$$\int{\left(2 e\right)^{x} d x} = \frac{2^{x} e^{x}}{\ln{\left(2 \right)} + 1}+C$$

答案

$$$\int 2^{x} e^{x}\, dx = \frac{2^{x} e^{x}}{\ln\left(2\right) + 1} + C$$$A


Please try a new game Rotatly