Integrale di $$$2^{x} e^{x}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int 2^{x} e^{x}\, dx$$$.
Soluzione
L'input viene riscritto: $$$\int{2^{x} e^{x} d x}=\int{\left(2 e\right)^{x} d x}$$$.
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=2 e$$$:
$${\color{red}{\int{\left(2 e\right)^{x} d x}}} = {\color{red}{\frac{\left(2 e\right)^{x}}{\ln{\left(2 e \right)}}}}$$
Pertanto,
$$\int{\left(2 e\right)^{x} d x} = \frac{\left(2 e\right)^{x}}{\ln{\left(2 e \right)}}$$
Semplifica:
$$\int{\left(2 e\right)^{x} d x} = \frac{2^{x} e^{x}}{\ln{\left(2 \right)} + 1}$$
Aggiungi la costante di integrazione:
$$\int{\left(2 e\right)^{x} d x} = \frac{2^{x} e^{x}}{\ln{\left(2 \right)} + 1}+C$$
Risposta
$$$\int 2^{x} e^{x}\, dx = \frac{2^{x} e^{x}}{\ln\left(2\right) + 1} + C$$$A