$$$\frac{1}{2 x}$$$ 的积分
您的输入
求$$$\int \frac{1}{2 x}\, dx$$$。
解答
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(x \right)} = \frac{1}{x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{1}{2 x} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{2}\right)}}$$
$$$\frac{1}{x}$$$ 的积分为 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{x} d x}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{2}$$
因此,
$$\int{\frac{1}{2 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{2}$$
加上积分常数:
$$\int{\frac{1}{2 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{2}+C$$
答案
$$$\int \frac{1}{2 x}\, dx = \frac{\ln\left(\left|{x}\right|\right)}{2} + C$$$A
Please try a new game Rotatly